Перевод: с русского на английский

с английского на русский

(в сети энергоснабжения)

  • 1 работа сети энергоснабжения

    Railway term: commercial power

    Универсальный русско-английский словарь > работа сети энергоснабжения

  • 2 системная авария в сети энергоснабжения

    1. complete power failure

     

    системная авария в сети энергоснабжения
    (полное прекращение подачи электроэнергии)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > системная авария в сети энергоснабжения

  • 3 кондуктивная электромагнитная помеха в системе энергоснабжения

    1. conductive electromagnetic hindrance

     

    кондуктивная электромагнитная помеха в системе энергоснабжения
    Электромагнитная помеха, распространяющаяся по элементам электрической сети.
    [ ГОСТ 13109-97]

    Нормы качества элекрической энергии (КЭ), установленные стандартом, являются уровнями электромагнитной совместимости для кондуктивных электромагнитных помех в системах электроснабжения общего назначения.

    [В. В. Суднова. Качество электрической энергии]

    Тематики

    EN

    Смотри также

    Русско-английский словарь нормативно-технической терминологии > кондуктивная электромагнитная помеха в системе энергоснабжения

  • 4 коэффициент нагрузки

    1) Engineering: capacity factor (отношение средней нагрузки аппарата или установки к номинальной), duty factor, effective demand factor, load coefficient, load factor, load ratio, operating load factor (заполнения графика), output factor, relative severity factor
    2) Mathematics: demand factor
    3) Information technology: demand factor (в сети энергоснабжения), loading factor, usage
    5) Coolers: load rate
    6) Sakhalin energy glossary: power factor
    7) Automation: coefficient of load
    8) Sakhalin A: load( lng) factor
    10) Combustion gas turbines: loading factor (отношение коэффициента подъёмной силы к относительной скорости на выходе из решётки профилей)

    Универсальный русско-английский словарь > коэффициент нагрузки

  • 5 коэффициент нагрузки

    ( в сети энергоснабжения) demand factor, relative severity factor, load factor

    Русско-английский словарь по вычислительной технике и программированию > коэффициент нагрузки

  • 6 сеть электропитания переменного тока

    1. AC mains supply

    1.2.8.1 сеть электропитания переменного тока (AC mains supply): Внешняя система электропитания переменного тока, питающая оборудование. Эти источники электропитания включают в себя частные или общественные системы энергоснабжения и, если не указано особо в настоящем стандарте (например, в 1.4.5), эквивалентные источники, например мотор-генераторы и источники бесперебойного электропитания.

    Примечание - См. приложение V - типичные примеры систем электропитания переменного тока.

    Источник: ГОСТ Р МЭК 60950-1-2009: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    1.2.8.1 сеть электропитания переменного тока (AC mains supply): Внешняя система электропитания переменного тока, питающая оборудование. Эти источники электропитания включают в себя частные или общественные системы энергоснабжения и, если не указано особо в настоящем стандарте (например, в 1.4.5), эквивалентные источники, например мотор-генераторы и источники бесперебойного электропитания.

    Примечания

    1. См. приложение V - типичные примеры систем электропитания переменного тока.

    2. Термин «сеть» или «сеть электропитания» используется для обозначения как сети электропитания переменного тока, так и сети электропитания постоянного тока.

    Источник: ГОСТ Р МЭК 60950-1-2005: Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > сеть электропитания переменного тока

  • 7 интеллектуальный учет электроэнергии

    1. smart metering

     

    интеллектуальный учет электроэнергии
    -
    [Интент]

    Учет электроэнергии

    Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические, нефизические понятия, не имеют строгой дефиниции и допускают произвольные толкования. Столь же нечетко определены и задачи Smart Metering в современных электрических сетях.
    Нужно ли использовать эти термины в такой довольно консервативной области, как электроэнергетика? Что отличает новые системы учета электроэнергии и какие функции они должны выполнять? Об этом рассуждает Лев Константинович Осика.

    SMART METERING – «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ» ЭЛЕКТРОЭНЕРГИИ

    Определения и задачи
    По многочисленным публикациям в СМИ, выступлениям на конференциях и совещаниях, сложившемуся обычаю делового оборота можно сделать следующие заключения:
    • «интеллектуальные измерения» производятся у потребителей – физических лиц, проживающих в многоквартирных домах или частных домовладениях;
    • основная цель «интеллектуальных измерений» и реализующих их «интеллектуальных приборов учета» в России – повышение платежной дисциплины, борьба с неплатежами, воровством электроэнергии;
    • эти цели достигаются путем так называемого «управления электропотреблением», под которым подразумеваются ограничения и отключения неплательщиков;
    • средства «управления электропотреблением» – коммутационные аппараты, получающие команды на включение/отключение, как правило, размещаются в одном корпусе со счетчиком и представляют собой его неотъемлемую часть.
    Главным преимуществом «интеллектуального счетчика» в глазах сбытовых компаний является простота осуществления отключения (ограничения) потребителя за неплатежи (или невнесенную предоплату за потребляемую электроэнергию) без применения физического воздействия на существующие вводные выключатели в квартиры (коттеджи).
    В качестве дополнительных возможностей, стимулирующих установку «интеллектуальных приборов учета», называются:
    • различного рода интеграция с измерительными приборами других энергоресурсов, с биллинговыми и информационными системами сбытовых и сетевых компаний, муниципальных администраций и т.п.;
    • расширенные возможности отображения на дисплее счетчика всей возможной (при первичных измерениях токов и напряжений) информации: от суточного графика активной мощности, напряжения, частоты до показателей надежности (времени перерывов в питании) и денежных показателей – стоимости потребления, оставшейся «кредитной линии» и пр.;
    • двухсторонняя информационная (и управляющая) связь сбытовой компании и потребителя, т.е. передача потребителю различных сообщений, дистанционная смена тарифа, отключение или ограничение потребления и т.п.

    ЧТО ТАКОЕ «ИНТЕЛЛЕКТУАЛЬНЫЕ ИЗМЕРЕНИЯ»?

    Приведем определение, данное в тематическом докладе комитета ЭРРА «Нормативные аспекты СМАРТ ИЗМЕРЕНИЙ», подготовленном известной международной компанией КЕМА:
    «…Для ясности необходимо дать правильное определение смарт измерениям и описать организацию инфраструктуры смарт измерений. Необходимо отметить, что между смарт счетчиком и смарт измерением существует большая разница. Смарт счетчик – это отдельный прибор, который установлен в доме потребителя и в основном измеряет потребление энергии потребителем. Смарт измерения – это фактическое применение смарт счетчиков в большем масштабе, то есть применение общего принципа вместо отдельного прибора. Однако, если рассматривать пилотные проекты смарт измерений или национальные программы смарт измерений, то иногда можно найти разницу в определении смарт измерений. Кроме того, также часто появляются такие термины, как автоматическое считывание счетчика (AMR) и передовая инфраструктура измерений (AMI), особенно в США, в то время как в ЕС часто используется достаточно туманный термин «интеллектуальные системы измерений …».
    Представляют интерес и высказывания В.В. Новикова, начальника лаборатории ФГУП ВНИИМС [1]: «…Это автоматизированные системы, которые обеспечивают и по-требителям, и сбытовым компаниям контроль и управление потреблением энергоресурсов согласно установленным критериям оптимизации энергосбережения. Такие измерения называют «интеллектуальными измерениями», или Smart Metering, как принято за рубежом …
    …Основные признаки Smart Metering у счетчиков электрической энергии. Их шесть:
    1. Новшества касаются в меньшей степени принципа измерений электрической энергии, а в большей – функциональных возможностей приборов.
    2. Дополнительными функциями выступают, как правило, измерение мощности за короткие периоды, коэффициента мощности, измерение времени, даты и длительности провалов и отсутствия питающего напряжения.
    3. Счетчики имеют самодиагностику и защиту от распространенных методов хищения электроэнергии, фиксируют в журнале событий моменты вскрытия кожуха, крышки клеммной колодки, воздействий сильного магнитного поля и других воздействий как на счетчик, его информационные входы и выходы, так и на саму электрическую сеть.
    4. Наличие функций для управления нагрузкой и подачи команд на включение и отключение электрических приборов.
    5. Более удобные и прозрачные функции для потребителей и энергоснабжающих организаций, позволяющие выбирать вид тарифа и энергосбытовую компанию в зависимости от потребностей в энергии и возможности ее своевременно оплачивать.
    6. Интеграция измерений и учета всех энергоресурсов в доме для выработки решений, минимизирующих расходы на оплату энергоресурсов. В эту стратегию вовлекаются как отдельные потребители, так и управляющие компании домами, энергоснабжающие и сетевые компании …».
    Из этих цитат нетрудно заметить, что первые 3 из 6 функций полностью повторяют требования к счетчикам АИИС КУЭ на оптовом рынке электроэнергии и мощности (ОРЭМ), которые не менялись с 2003 г. Функция № 5 является очевидной функцией счетчика при работе потребителя на розничных рынках электроэнергии (РРЭ) в условиях либеральной (рыночной) энергетики. Функция № 6 практически повторяет многочисленные определения понятия «умный дом», а функция № 4, провозглашенная в нашей стране, полностью соответствует желаниям сбытовых компаний найти наконец действенное средство воздействия на неплательщиков. При этом ясно, что неплатежи – не следствие отсутствия «умных счетчиков», а результат популистской политики правительства. Отключить физических (да и юридических) лиц невозможно, и эта функция счетчика, безусловно, останется невостребованной до внесения соответствующих изменений в нормативно-правовые акты.
    На функции № 4 следует остановиться особо. Она превращает измерительный прибор в управляющую систему, в АСУ, так как содержит все признаки такой системы: наличие измерительного компонента, решающего компонента (выдающего управляющие сигналы) и, в случае размещения коммутационных аппаратов внутри счетчика, органов управления. Причем явно или неявно, как и в любой системе управления, подразумевается обратная связь: заплатил – включат опять.
    Обоснованное мнение по поводу Smart Grid и Smart Metering высказал В.И. Гуревич в [2]. Приведем здесь цитаты из этой статьи с локальными ссылками на используемую литературу: «…Обратимся к истории. Впервые этот термин встретился в тексте статьи одного из западных специалистов в 1998 г. [1]. В названии статьи этот термин был впервые использован Массудом Амином и Брюсом Волленбергом в их публикации «К интеллектуальной сети» [2]. Первые применения этого термина на Западе были связаны с чисто рекламными названиями специальных контроллеров, предназначенных для управления режимом работы и синхронизации автономных ветрогенераторов (отличающихся нестабильным напряжением и частотой) с электрической сетью. Потом этот термин стал применяться, опять-таки как чисто рекламный ход, для обозначения микропроцессорных счетчиков электроэнергии, способных самостоятельно накапливать, обрабатывать, оценивать информацию и передавать ее по специальным каналам связи и даже через Интернет. Причем сами по себе контроллеры синхронизации ветрогенераторов и микропроцессорные счетчики электроэнергии были разработаны и выпускались различными фирмами еще до появления термина Smart Grid. Это название возникло намного позже как чисто рекламный трюк для привлечения покупателей и вначале использовалось лишь в этих областях техники. В последние годы его использование расширилось на системы сбора и обработки информации, мониторинга оборудования в электроэнергетике [3] …
    1. Janssen M. C. The Smart Grid Drivers. – PAC, June 2010, p. 77.
    2. Amin S. M., Wollenberg B. F. Toward a Smart Grid. – IEEE P&E Magazine, September/October, 2005.
    3. Gellings C. W. The Smart Grid. Enabling Energy Efficiency and Demand Response. – CRC Press, 2010. …».
    Таким образом, принимая во внимание столь различные мнения о предмете Smart Grid и Smart Metering, сетевая компания должна прежде всего определить понятие «интеллектуальная система измерения» для объекта измерений – электрической сети (как актива и технологической основы ОРЭМ и РРЭ) и представить ее предметную область именно для своего бизнеса.

    БИЗНЕС И «ИНТЕЛЛЕКТУАЛЬНЫЙ УЧЕТ»

    В результате изучения бизнес-процессов деятельности ряда сетевых компаний и взаимодействия на РРЭ сетевых, энергосбытовых компаний и исполнителей коммунальных услуг были сформулированы следующие исходные условия.
    1. В качестве главного признака новой интеллектуальной системы учета электроэнергии (ИСУЭ), отличающей ее от существующей системы коммерческого и технического учета электроэнергии, взято расширение функций, причем в систему вовлекаются принципиально новые функции: определение технических потерь, сведение балансов в режиме, близком к on-line, определение показателей надежности. Это позволит, среди прочего, получить необходимую информацию для решения режимных задач Smart Grid – оптимизации по реактивной мощности, управления качеством электроснабжения.
    2. Во многих случаях (помимо решения задач, традиционных для сетевой компании) рассматриваются устройства и системы управления потреблением у физических лиц, осуществляющие их ограничения и отключения за неплатежи (традиционные задачи так называемых систем AMI – Advanced Metering Infrastructure).
    Учитывая вышеизложенное, для электросетевой компании предлагается принимать следующее двойственное (по признаку предметной области) определение ИСУЭ:
    в отношении потребителей – физических лиц: «Интеллектуальная система измерений – это совокупность устройств управления нагрузкой, приборов учета, коммуникационного оборудования, каналов передачи данных, программного обеспечения, серверного оборудования, алгоритмов, квалифицированного персонала, которые обеспечивают достаточный объем информации и инструментов для управления потреблением электроэнергии согласно договорным обязательствам сторон с учетом установленных критериев энергоэффективности и надежности»;
    в отношении системы в целом: «Интеллектуальная система измерений – это автоматизированная комплексная система измерений электроэнергии (с возможностью измерений других энергоресурсов), определения учетных показателей и решения на их основе технологических и бизнес-задач, которая позволяет интегрировать различные информационные системы субъектов рынка и развиваться без ограничений в обозримом будущем».

    ЗАДАЧИ «ИНТЕЛЛЕКТУАЛЬНОГО УЧЕТА»

    Далее мы будем основываться на том, что ИСУЭ позволит осуществить следующие функции в бытовом секторе:
    • дистанционное получение от каждой точки измерения (узла учета) у бытового потребителя сведений об отпущенной или потребленной электроэнергии;
    • расчет внутриобъектового (многоквартирный жилой дом, поселок) баланса поступления и потребления энергоресурсов с целью выявления технических и коммерческих потерь и принятия мер по эффективному энергосбережению;
    • контроль параметров поставляемых энергоресурсов с целью обнаружения и регистрации их отклонений от договорных значений;
    • обнаружение фактов несанкционированного вмешательства в работу приборов учета или изменения схем подключения электроснабжения;
    • применение санкций против злостных неплательщиков методом ограничения потребляемой мощности или полного отключения энергоснабжения;
    • анализ технического состояния и отказов приборов учета;
    • подготовка отчетных документов об электропотреблении;
    • интеграция с биллинговыми системами.

    «ИНТЕЛЛЕКТУАЛЬНЫЙ КОММЕРЧЕСКИЙ УЧЕТ»

    Остановимся подробно на одном из атрибутов ИСУЭ, который считаю ключевым для основного электросетевого бизнеса.
    Особенностью коммерческого учета электроэнергии (КУЭ) распределительных сетевых компаний является наличие двух сфер коммерческого оборота электроэнергии – ОРЭМ и РРЭ, которые хотя и сближаются в нормативном и организационном плане, но остаются пока существенно различными с точки зрения требований к КУЭ.
    Большинство сетевых компаний является субъектом как ОРЭМ, так и РРЭ. Соответственно и сам коммерческий учет в отношении требований к нему разделен на два вида:
    • коммерческий учет на ОРЭМ (технические средства – АИИС КУЭ);
    • коммерческий учет на РРЭ (технические средства – АСКУЭ).
    Кроме того, к коммерческому учету, т.е. к определению тех показателей, которые служат для начисления обязательств и требований сетевой компании (оплата услуг по транспорту электроэнергии, купля-продажа технологических потерь), следует отнести и измерения величин, необходимых для определения показателей надежности сети в отношении оказания услуг по передаче электроэнергии.
    Отметим, что сложившиеся технологии АИИС КУЭ и АСКУЭ по своей функциональной полноте (за исключением функции коммутации нагрузки внутри систем) – это технологии Smart Metering в том понимании, которое мы обсуждали выше. Поэтому далее будем считать эти понятия полностью совпадающими.
    Подсистема ИСУЭ на РРЭ, безусловно, самая сложная и трудоемкая часть всей интеллектуальной системы как с точки зрения организации сбора информации (включая измерительные системы (ИС) и средства связи в автоматизированных системах), так и с точки зрения объема точек поставки и соответственно средств измерений. Последние отличаются большим многообразием и сложностью контроля их и метрологических характеристик (МХ).
    Если технические требования к ИС на ОРЭМ и к ИС крупных потребителей (по крайней мере потребителей с присоединенной мощностью свыше 750 кВА) принципиально близки, то в отношении нормативного и организационного компонентов имеются сильные различия. Гармоничная их интеграция в среде разных компонентов – основная задача создания современной системы ИСУЭ любой сетевой компании.
    Особенностью коммерческого учета для нужд сетевого комплекса – основного бизнеса компании в отличие от учета электроэнергии потребителей, генерирующих источников и сбытовых компаний – является сам характер учетных показателей, вернее, одного из них – технологических потерь электроэнергии. Здесь трудность состоит в том, что границы балансовой принадлежности компании должны оснащаться средствами учета в интересах субъектов рынка – участников обращения электроэнергии, и по правилам, установленным для них, будь то ОРЭМ или РРЭ. А к измерению и учету важнейшего собственного учетного показателя, потерь, отдельные нормативные требования не предъявляются, хотя указанные показатели должны определяться по своим технологиям.
    При этом сегодня для эффективного ведения бизнеса перед сетевыми компаниями, по мнению автора, стоит задача корректного определения часовых балансов в режиме, близком к on-line, в условиях, когда часть счетчиков (со стороны ОРЭМ) имеют автоматические часовые измерения электроэнергии, а подавляющее большинство (по количеству) счетчиков на РРЭ (за счет физических лиц и мелкомоторных потребителей) не позволяют получать такие измерения. Актуальность корректного определения фактических потерь следует из необходимости покупки их объема, не учтенного при установлении тарифов на услуги по передаче электроэнергии, а также предоставления информации для решения задач Smart Grid.
    В то же время специалистами-практиками часто ставится под сомнение практическая востребованность определения технологических потерь и их составляющих в режиме on-line. Учитывая это мнение, которое не согласуется с разрабатываемыми стратегиями Smart Grid, целесообразно оставить окончательное решение при разработке ИСУЭ за самой компанией.
    Cистемы АИИС КУЭ сетевых компаний никогда не создавались целенаправленно для решения самых насущных для них задач, таких как:
    1. Коммерческая задача купли-продажи потерь – качественного (прозрачного и корректного в смысле метрологии и требований действующих нормативных документов) инструментального или расчетно-инструментального определения технологических потерь электроэнергии вместе с их составляющими – техническими потерями и потреблением на собственные и хозяйственные нужды сети.
    2. Коммерческая задача по определению показателей надежности электроснабжения потребителей.
    3. Управленческая задача – получение всех установленных учетной политикой компании балансов электроэнергии и мощности по уровням напряжения, по филиалам, по от-дельным подстанциям и группам сетевых элементов, а также КПЭ, связанных с оборотом электроэнергии и оказанием услуг в натуральном выражении.
    Не ставилась и задача технологического обеспечения возможного в перспективе бизнеса сетевых компаний – предоставления услуг оператора коммерческого учета (ОКУ) субъектам ОРЭМ и РРЭ на территории обслуживания компании.
    Кроме того, необходимо упорядочить систему учета для определения коммерческих показателей в отношении определения обязательств и требований оплаты услуг по транспорту электроэнергии и гармонизировать собственные интересы и интересы смежных субъектов ОРЭМ и РРЭ в рамках существующей системы взаимодействий и возможной системы взаимодействий с введением института ОКУ.
    Именно исходя из этих целей (не забывая при этом про коммерческие учетные показатели смежных субъектов рынка в той мере, какая требуется по обязательствам компании), и нужно строить подлинно интеллектуальную измерительную систему. Иными словами, интеллект измерений – это главным образом интеллект решения технологических задач, необходимых компании.
    По сути, при решении нового круга задач в целевой модели интеллектуального учета будет реализован принцип придания сетевой компании статуса (функций) ОКУ в зоне обслуживания. Этот статус формально прописан в действующей редакции Правил розничных рынков (Постановление Правительства РФ № 530 от 31.08.2006), однако на практике не осуществляется в полном объеме как из-за отсутствия необходимой технологической базы, так и из-за организационных трудностей.
    Таким образом, сетевая компания должна сводить баланс по своей территории на новой качественной ступени – оперативно, прозрачно и полно. А это означает сбор информации от всех присоединенных к сети субъектов рынка, формирование учетных показателей и передачу их тем же субъектам для определения взаимных обязательств и требований.
    Такой подход предполагает не только новую схему расстановки приборов в соответствии с комплексным решением всех поставленных технологами задач, но и новые функциональные и метрологические требования к измерительным приборам.

    ПРЕИМУЩЕСТВА ИСУЭ

    Внедрение ИСУЭ даст новые широкие возможности для всех участников ОРЭМ и РРЭ в зоне обслуживания электросетевой компании.
    Для самой компании:
    1. Повышение эффективности существующего бизнеса.
    2. Возможности новых видов бизнеса – ОКУ, регистратор единой группы точек поставки (ГТП), оператор заправки электрического транспорта и т.п.
    3. Обеспечение внедрения технологий Smart grid.
    4. Создание и развитие программно-аппаратного комплекса (с сервисно-ориентированной архитектурой) и ИС, снимающих ограничения на развитие технологий и бизнеса в долгосрочной перспективе.
    Для энергосбытовой деятельности:
    1. Автоматический мониторинг потребления.
    2. Легкое определение превышения фактических показателей над планируемыми.
    3. Определение неэффективных производств и процессов.
    4. Биллинг.
    5. Мониторинг коэффициента мощности.
    6. Мониторинг показателей качества (напряжение и частота).
    Для обеспечения бизнеса – услуги для генерирующих, сетевых, сбытовых компаний и потребителей:
    1. Готовый вариант на все случаи жизни.
    2. Надежность.
    3. Гарантия качества услуг.
    4. Оптимальная и прозрачная стоимость услуг сетевой компании.
    5. Постоянное внедрение инноваций.
    6. Повышение «интеллекта» при работе на ОРЭМ и РРЭ.
    7. Облегчение технологического присоединения энергопринимающих устройств субъектов ОРЭМ и РРЭ.
    8. Качественный консалтинг по всем вопросам электроснабжения и энергосбережения.
    Успешная реализации перечисленных задач возможна только на базе информационно-технологической системы (программно-аппаратного комплекса) наивысшего достигнутого на сегодняшний день уровня интеграции со всеми возможными информационными системами субъектов рынка – измерительно-учетными как в отношении электроэнергии, так и (в перспективе) в отношении других энергоресурсов.

    ЛИТЕРАТУРА

    1. Новиков В.В. Интеллектуальные измерения на службе энергосбережения // Энергоэксперт. 2011. № 3.
    2. Гуревич В.И. Интеллектуальные сети: новые перспективы или новые проблемы? // Электротехнический рынок. 2010. № 6.

    [ http://www.news.elteh.ru/arh/2011/71/14.php]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > интеллектуальный учет электроэнергии

  • 8 источник бесперебойного питания

    1. UPS
    2. uninterruptible power systems
    3. uninterruptible power supply
    4. power protection
    5. no-break power supply
    6. battery backup
    7. battery back-up

     

    источник бесперебойного питания
    ИБП

    Сочетание преобразователей, переключателей и устройств хранения электроэнергии (например, аккумуляторных батарей), образующее систему электропитания для поддержания непрерывности питания нагрузки в случае отказа источника энергоснабжения.
    [ ГОСТ Р МЭК 62040-1-1-2009]

    источник бесперебойного питания
    ИБП

    Устройство, поддерживающее заданное качество выходного напряжения при наличии нарушения питающей сети за счет использования энергии аккумуляторных батарей (исчезновение напряжения, искажения формы, отклонения от диапазона входных значений и т. д.). ИБП с двойным преобразованием класса VFI-SS-111 обеспечивают защиту от любых нарушений питающей сети.
    [ http://www.radistr.ru/misc/document423.phtml с изменениями]

    источник бесперебойного питания
    UPS
    Автоматическое устройство, устанавливаемое между источником энергии и оборудованием, обеспечивающее питание оборудования за счет энергии аккумуляторных батарей при отключении основного электроснабжения, защищающее оборудование от колебаний напряжения и электромагнитных шумов.
    [РД 01.120.00-КТН-228-06]

    EN

    uninterruptible power supply
    UPS

    An Electronic device connected between the Utility Power and electric consumers, comprising generally of filters, Rectifier, Battery, DC/AC Inverter, Transfer Switch and associated circuits.
    The UPS is intended to provide clean undisturbed stabilized AC voltage, within strict amplitude and frequency limits, to protect the consumer from any Utility Power disturbances and irregularities, including outages for a limited time dictated by the capacity of the Battery Bank. The term UPS refers generally to AC Static systems, Other types include DC and Rotary UPS.
    [ http://www.upsonnet.com/UPS-Glossary/]

    Исходная базовая идея у всех ИБП одинакова и основана на использовании резервного питания от аккумуляторов. Если напряжение в электрической сети исчезло, необходимо достаточно быстро переключить нагрузку на питание от встроенного аккумулятора, и наоборот, если напряжение восстановилось, снова переключить на питание от сети.
    Время автономной работы от аккумулятора должно быть достаточным для безопасного завершения работы компьютера без потери информации.

    В настоящее время сложилась общепринятая классификация ИБП по двум основным показа­телям - мощности и типу ИБП.

    Классификация ИБП по мощности носит упрощенный характер и отражает в основном конструктивное исполнение ИБП:

    • ИБП малой мощности от 250 до 3000 ВА выпускаются в настольном или стоечном исполнении,
    • ИБП средней мощности от 3000 до 30 000 ВА обычно изготавливаются в напольном исполнении,
    • ИБП большой мощности от 40 до нескольких сотен кВА имеют напольное исполнение и размещаются в специальных электромашинных помещениях.

    Существуют две топологии ИБП:

    • off-line (резервные) ИБП,
    • on-­line ИБП.

    [ http://www.tcs.ru/reviews/?id=345 с изменениями]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > источник бесперебойного питания

  • 9 восстановление при исчезновении питающего напряжения

    1. powerfailrecovery

     

    восстановление при исчезновении питающего напряжения
    Метод борьбы с последствиями отключения напряжения в питающей сети. Система оборудуется устройством контроля линии энергоснабжения, которое обнаруживает любое длительное отклонение напряжения в питающей сети за допустимые пределы и осуществляет прерывание по неисправности в системе питания, когда происходят такие отклонения. Программа обслуживания этого прерывания запоминает дескрипторы всех процессов в энергонезависимой памяти и затем останавливает работу. Когда напряжение в питающей сети восстанавливается, система снова запускается и может восстановить все процессы по их дескрипторам.
    [Домарев В.В. Безопасность информационных технологий. Системный подход.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > восстановление при исчезновении питающего напряжения

  • 10 неисправность

    1. trouble
    2. shutdown
    3. problem
    4. malfunction
    5. layup
    6. health problem
    7. fouling
    8. faultiness
    9. fault
    10. failure occurrence
    11. failure
    12. fail
    13. disturbance
    14. disrepair
    15. disease
    16. defect
    17. bug
    18. breaking
    19. breakdown
    20. breakage
    21. abortion
    22. abort
    23. abnormality

     

    неисправность
    отказ в работе

    Состояние машины, характеризующееся неспособностью выполнять заданную функцию, исключая случаи проведения профилактического технического обслуживания, других запланированных действий или недостаток внешних ресурсов (например, отключение энергоснабжения).
    Примечание 1
    Неисправность часто является результатом повреждения самой машины, однако она может иметь место и без повреждения.
    Примечание 2
    На практике термины «неисправность», «отказ» и «повреждение» часто используются как синонимы.
    [ ГОСТ Р ИСО 12100-1:2007]

    неисправность

    Состояние оборудования, характеризуемое его неспособностью выполнять требуемую функцию, исключая профилактическое обслуживание или другие планово-предупредительные действия, а также исключая неспособность выполнять требуемую функцию из-за недостатка внешних ресурсов.
    Примечание - Неисправность часто является следствием отказа самого оборудования, но может существовать и без предварительного отказа.
    [ГОСТ ЕН 1070-2003]

    неисправность
    Состояние технического объекта (элемента), характеризуемое его неспособностью выполнять требуемую функцию, исключая периоды профилактического технического обслуживания или другие планово-предупредительные действия, или в результате недостатка внешних ресурсов.
    Примечания
    1 Неисправность является часто следствием отказа самого технического объекта, но может существовать и без предварительного отказа.
    2 Английский термин «fault» и его определение идентичны данному в МЭК 60050-191 (МЭС 191-05-01) [1]. В машиностроении чаще применяют французский термин «defaut» или немецкий термин «Fehler», чем термины «panne» и «Fehlzusstand», которые употребляют с этим определением.
    [ ГОСТ Р ИСО 13849-1-2003]

    Тематики

    EN

    DE

    FR

    3.16 неисправность (fault): Состояние объекта, характеризующееся неспособностью исполнять требуемую функцию, исключая время профилактического технического обслуживания или других запланированных действий, или простои из-за недостатка внешних ресурсов

    Примечание - Неисправность часто является результатом отказа объекта, но может существовать и без отказа.

    Источник: ГОСТ Р 51901.6-2005: Менеджмент риска. Программа повышения надежности оригинал документа

    3.6 неисправность (fault): Состояние элемента, характеризующееся неспособностью исполнять требуемую функцию, исключая период технического обслуживания, ремонта или других запланированных действий, а также из-за недостатка внешних ресурсов.

    Примечание - Неисправность часто является результатом отказа элемента, но может существовать и без предшествующего отказа.

    Источник: ГОСТ Р 51901.5-2005: Менеджмент риска. Руководство по применению методов анализа надежности оригинал документа

    3.5 неисправность (fault): Состояние объекта, когда один из его элементов или группа элементов проявляют признаки деградации или нарушения работы, что может привести к отказу машины.

    Примечания

    1 Неисправность часто является следствием отказа, но может иметь место и при его отсутствии.

    2 Состояние объекта не рассматривают как неисправное, если оно возникло вследствие запланированных процедур или нехватки внешних ресурсов.

    Источник: ГОСТ Р ИСО 13379-2009: Контроль состояния и диагностика машин. Руководство по интерпретации данных и методам диагностирования оригинал документа

    3.2 неисправность (malfunction): Неспособность оборудования, систем защиты и компонентов выполнять заданные функции.

    Примечания

    1 См. также ГОСТ Р ИСО 12100-1.

    2 В контексте настоящего стандарта неисправность может произойти по целому ряду причин, включая:

    a) изменение характеристик материалов или размеров деталей;

    b) отказ одной (или более) составной части оборудования, систем защиты и компонентов;

    c) воздействие внешних факторов (например, ударов, вибрации, электромагнитных полей);

    d) погрешности или недостатки при разработке (например, ошибки программного обеспечения);

    e) помехи от сети питания или иных коммуникаций;

    f) потерю управления оператором (особенно в случае применения ручных и передвижных машин).

    Источник: ГОСТ Р ЕН 1127-1-2009: Взрывоопасные среды. Взрывозащита и предотвращение взрыва. Часть 1. Основополагающая концепция и методология

    3.27 неисправность (malfunction): Неспособность оборудования, систем защиты и компонентов выполнять заданные функции (см. также ГОСТ Р ИСО 12100-1).

    Примечание 1 - В контексте настоящего стандарта неисправность может произойти по целому ряду причин, включая:

    - изменение характеристик материалов или размеров деталей;

    - отказ одной (или более) составной части оборудования, систем защиты и компонентов;

    - воздействие внешних факторов (например ударов, вибрации, электромагнитных полей);

    - погрешности или недостатки при разработке (например ошибки программного обеспечения);

    - помехи от сети питания или иных коммуникаций;

    - потерю управления оператором (особенно в случае применения ручных и передвижных машин).

    Источник: ГОСТ Р ЕН 1127-2-2009: Взрывоопасные среды. Взрывозащита и предотвращение взрыва. Часть 2. Основополагающая концепция и методология (для подземных выработок)

    3.4 неисправность (malfunction): Неспособность оборудования, защитных систем и компонентов выполнять заданные функции.

    Примечание - В контексте настоящего стандарта это может произойти по целому ряду причин, включая:

    - изменение характеристик материалов или размеров деталей;

    - отказ одной (или более) составной части оборудования, систем защиты и компонентов;

    - воздействие внешних факторов (например ударов, вибрации, электромагнитных полей);

    - погрешности или недостатки при разработке (например ошибки программного обеспечения);

    - помехи от сети питания или иных коммуникаций;

    - потерю управления оператором (особенно в случае применения ручных и передвижных машин).

    Источник: ГОСТ Р ЕН 13463-1-2009: Оборудование неэлектрическое, предназначенное для применения в потенциально взрывоопасных средах. Часть 1. Общие требования

    3.9 неисправность (breaking): Вращение мешалки с большой скоростью или рывками, которое происходит вследствие расплавления пробы угля и образования сплошной массы вокруг вала мешалки и лопастей. Это делает определение истинного значения текучести невозможным.

    Источник: ГОСТ Р 54247-2010: Уголь каменный. Определение пластических свойств на пластометре Гизелера оригинал документа

    3.3 неисправность (fault): Состояние объекта, при котором он не способен выполнять требуемую функцию, за исключением такой неспособности при техническом обслуживании или других плановых мероприятиях или вследствие нехватки внешних ресурсов.

    Примечания

    1 Неисправность часто является следствием отказа объекта, но может иметь место и без него.

    2 В настоящем стандарте термин «неисправность» используется наряду с термином «отказ» по историческим причинам.

    Источник: ГОСТ Р 51901.12-2007: Менеджмент риска. Метод анализа видов и последствий отказов оригинал документа

    3.2 неисправность (fault): Состояние объекта, когда один из его элементов или группа элементов проявляет признаки деградации или нарушения работы, что может привести к отказу машины.

    Примечание - Неисправность может привести к отказу.

    Источник: ГОСТ Р ИСО 17359-2009: Контроль состояния и диагностика машин. Общее руководство по организации контроля состояния и диагностирования оригинал документа

    Русско-английский словарь нормативно-технической терминологии > неисправность

  • 11 бездоговорное потребление энергии

    1. non contract energy consumption

     

    бездоговорное потребление энергии
    Использование электрической энергии потребителем в отсутствие заключенного в установленном порядке договора энергоснабжения (купли-продажи электроэнергии) или в условиях присоединения энергопринимающих устройств потребителя к электрической сети без обращения к сетевой организации, владеющей указанными сетями на праве собственности или ином законном основании, в отсутствие согласия такой сетевой организации на присоединение энергопринимающих устройств потребителя к своим сетям, или с нарушением технических условий такого присоединения, (или) без разрешения государственного надзорного органа.
    [ОАО РАО "ЕЭС России" СТО 17330282.27.010.001-2008]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > бездоговорное потребление энергии

См. также в других словарях:

  • системная авария в сети энергоснабжения — (полное прекращение подачи электроэнергии) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN complete power failure …   Справочник технического переводчика

  • ДОГОВОР ЭНЕРГОСНАБЖЕНИЯ — в соответствии со ст. 510 ГК по договору энергоснабжения энергоснабжающая организация обязуется подавать абоненту (потребителю) через присоединенную сеть энергию, а абонент обязуется оплачивать принятую энергию, а также соблюдать предусмотренный… …   Юридический словарь современного гражданского права

  • Система энергоснабжения космического аппарата — Спутник связи Молния 1. Хорошо видны 6 панелей солнечных батарей, жёстко закреплённых на корпусе. Для максимизации мощности такой установки необходима постоянная ориентация корпуса аппарата на Солнце, что потребовало разработки оригинальной… …   Википедия

  • ЗАКЛЮЧЕНИЕ И ПРОДЛЕНИЕ ДОГОВОРА ЭНЕРГОСНАБЖЕНИЯ — оформление в требуемой форме согласованных условий договора энергоснабжения и его пролонгация. В случае, когда абонентом по договору энергоснабжения выступает гражданин, использующий энергию для бытового потребления, договор считается заключенным …   Большой экономический словарь

  • ИНЖЕНЕРНЫЕ СЕТИ — промышленного предприятия комплекс коммуникаций, обслуживающих производств. процесс: технологич. конвейеры и трубопроводы, устройства энергоснабжения, связи и сигнализации, системы во до и теплоснабжения, канализации, пылеудаления и пр. Различают …   Большой энциклопедический политехнический словарь

  • кондуктивная электромагнитная помеха в системе энергоснабжения — Электромагнитная помеха, распространяющаяся по элементам электрической сети. [ГОСТ 13109 97] Нормы качества элекрической энергии (КЭ), установленные стандартом, являются уровнями электромагнитной совместимости для кондуктивных электромагнитных… …   Справочник технического переводчика

  • Договор энергоснабжения — (англ contract of energy supply) в РФ гражданско правовой договор, в соответствии с которым энергоснабжающая организация обязуется подавать абоненту (потребителю) через присоединенную сеть энергию, а абонент обязуется оплачивать принятую энергию …   Энциклопедия права

  • ДОГОВОР ЭНЕРГОСНАБЖЕНИЯ — договор, по которому энергоснабжающая организация обязуется подавать абоненту (потребителю) через присоединенную сеть энергию, а абонент обязуется оплачивать принятую энергию, а также соблюдать предусмотренный договором режим ее потребления,… …   Энциклопедия юриста

  • Кондуктивная электромагнитная помеха в системе энергоснабжения — English: Conductive electromagnetic hindrance Электромагнитная помеха, распространяющаяся по элементам электрической сети (по ГОСТ 13109 97) Источник: Термины и определения в электроэнергетике. Справочник …   Строительный словарь

  • договор энергоснабжения — одна из разновидностей договора купли продажи, родственная договору поставки. Предусмотрен ст. 539 548 ГК РФ. По Д.э. энергоснабжающая организация обязуется подавать абоненту (потребителю) через присоединенную сеть энергию, а абонент оплачивать… …   Большой юридический словарь

  • Технологический уклад — (волна)  совокупность технологий, характерных для определенного уровня развития производства; в связи с научным и технико технологическим прогрессом происходит переход от более низких укладов к более высоким, прогрессивным.[1] Йозеф Шумпетер …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»